
Random Variables
In the last section we talked about the length of the longest run of heads
in the data if we flipped a coin 10 times.

I The length of the longest run of heads varied from trial to trial of
the experiment.

I In this section, we will introduce some notation for such variables
associated to experiments.

I We will talk about their distributions and measures of their expected
value and their variance. .

.



Random Variables
A Random Variable is a rule that assigns a number to each outcome of an

experiment. There may be more than one random variable associated with an

experiment. e.g. If I roll a pair of dice, one red and one green, and record
the pair of numbers on the uppermost faces. Let X be the sum of the
numbers on the uppermost faces.

I The value of X varies from trial to trial.
I Each outcome has a corresponding value of X .
I For example if the outcome is (1, 1), the corresponding value of X is

1 + 1 = 2.
I If the outcome is (4, 5), the corresponding value of X is 9. .

.



Example: Random Variables
If I roll a pair of dice, one red and one green, and record the pair of numbers

on the uppermost faces. Let X be the sum of the numbers on the uppermost

faces. What are the possible values of X?
I The outcomes of the experiment are given by:
{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

I The possible values of X are {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. .

.



Example: Random Variables
If I flip a coin 20 times and let X be the number of runs (total number of runs

of heads and tails) in the data, then X is a random variable.
If the outcome is

HHTTTHTTTTHHHTHHHHHH,

what is the value of X?
I we show runs of tails in red and runs of Heads in white:

HHTTTHTTTTHHHTHHHHHH

I We have 7 runs in this outcome, so the value of X corresponding to
this outcome is 7. .

.



More than One Random Variable
We can have more than one random variable associated to an experiment.

Example: An experiment consists of flipping a coin 4 times and observing the

result ion sequence of heads and tails. The outcomes in the sample space are

{HHHH, HHHT , HHTH, HHTT , HTHH, HTHT , HTTH, HTTT ,

THHH, THHT , THTH, THTT , TTHH, TTHT , TTTH, TTTT}.
I (a) Let Z denote the number of runs observed. What are the possible

values of Z?
I The possible values of Z are {1, 2, 3, 4}.
I (b) We could also define another random variable associated to

this experiment. Let X denote the number of heads observed. What
are the possible values of X?

I The possible values of X are {0, 1, 2, 3, 4}. .

.



Discrete Random Variables
For some random variables, the possible values of the variable can be separated
and listed in either a finite list or an infinite list. These variables are called
discrete random variables. Some examples are shown below:

Experiment R. Var. , X Poss. values of X
Roll a pair of six-sided dice Sum of the numbers {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Toss a coin 5 times Number of tails {0, 1, 2, 3, 4, 5}
Flip a coin until you get a tail The number of coin flips {1, 2, 3, . . . , }

Flip a coin 50 times Longest run of heads {0, 1, 2, 3, . . . , 50}.

.



Continuous Random Variables
On the other hand, a continuous random variable can assume any value in
some interval. Some examples are:

Experiment Random Variable, X
Choose an NFL Quarterback at random Height

Choose an NCAA Shot Putter at random Arm Length
Choose a Track and Field athlete at random Their best time for 100 meters

.

.



Probability Distributions for Discrete Random Variables
For a discrete random variable with finitely many possible values, we can

calculate the probability that a particular value of the random variable will be

observed by adding the probabilities of the outcomes of our experiment

associated to that value of the random variable (assuming that we know those

probabilities). This assignment of probabilities to each possible value of X is

called the probability distribution of X .

I

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

X P(X)
2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

.

.



Probability Distributions for Discrete Random Variables
If a discrete random variables has possible values x1, x2, x3, . . . , xk , then a
probability distribution P(X ) is a rule that assigns a probability P(xi )
to each value xi . More specifically,

0 ≤ P(xi ) ≤ 1 for each xi .

I and P(x1) + P(x2) + · · ·+ P(xk) = 1. .

.



Example: Probability Distributions for Discrete R. V.s
An experiment consists of flipping a coin 4 times and observing the sequence of
heads and tails. The random variable X is the number of heads in the observed
sequence. The random variable Y is the length of the longest run of heads in
the sequence and the random variable Z is the total number of runs in the
sequence (of both H’s and T’s). Find the probability distributions for X , Y and
Z .

I The equally likely sample space is:
{HHHH, HHHT , HHTH, HHTT , HTHH, HTHT , HTTH, HTTT ,
THHH, THHT , THTH, THTT , TTHH, TTHT , TTTH, TTTT}.

I

X= P(X)
# Heads

0 1/16

1 4/16

2 6/16

3 4/16

4 1/16

Y = P(Y)
longest run H’s

0 1/16

1 7/16

2 5/16

3 2/16

4 1/16

Z = P(Z)
# Runs

1 2/16

2 6/16

3 6/16

4 2/16

.

.
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Graphical Representation

We can also represent a probability distribution for a discrete random variable
with finitely many possible values graphically by constructing a bar graph.

I We form a category for each value of the random variable centered at the value

which does not contain any other possible value of the random variable.

I We make each category of equal width and above each category we draw a bar

with height equal to the probability of the corresponding value.

I If the possible values of the random variable are integers, we can give each bar a

base of width 1.

I Example: If we flip a coin 4 times and let X denote the number of heads in the
observed sequence. The following is a graphical representation of the probability
distribution of X .

0 1 2 3 4
X

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Prob.

.

.



Using The Graphical Representation

By Making all bars of equal width, we ensure that the graph adheres to the
area principle in that the probability that any set of values will occur is equal to
the area of the bars above those values. The total area of the distribution is 1.

I Example The following is a probability distribution histogram for a random
variable X.

1 2 3 4 5 6

0.1

0.2

What is P(X ≤ 5)? .

.



Using The Graphical Representation

By Making all bars of equal width, we ensure that the graph adheres to the
area principle in that the probability that any set of values will occur is equal to
the area of the bars above those values. The total area of the distribution is 1.

I Example The following is a probability distribution histogram for a random
variable X.

1 2 3 4 5 6

0.1

0.2

What is P(X ≤ 5)?

I P(X ≤ 5) is equal to the sum of the areas of the blue rectangles shown
above, which is 0.1 + 0.2 + 0.2 + 0.1 + 0.2 = 0.8

I Notice that since the total area of the distribution is 1, we can also
calculate P(X ≤ 5) as 1− P(X = 6) = 1− 0.2.

.

.



Calculating Probability for Continuous Variables

The probability distribution of a continuous random variable cannot be
represented in a table since the possible values of the variable cannot be
separated.

I The distribution is represented using the graphical method as a
continuous curve and is called a probability density function.

I Probabilities are calculated for intervals instead of particular values.

I The probability that the value of a random variable will fall in the interval
[a, b], denoted P(a ≤ X ≤ b) is given by the area under the probability
density function above that interval.

I The total area under the entire probability density curve is 1.

.

.



Calculating Probability for Continuous Variables

The picture below taken form the website
http://datascopeanalytics.com/what-we-think/2009/11/23/height-differences-among-professional-athletes.
It shows three probability density functions for the height (in inches) of NFL,
NBA and NHL players respectively(Compiled in November 2009).

Estimate the probability that an NFL
player chosen at random from the
group will have a height greater than
77 inches.

http://datascopeanalytics.com/what-we-think/2009/11/23/height-differences-among-professional-athletes


Calculating Probability for Continuous Variables

The picture below taken form the website
http://datascopeanalytics.com/what-we-think/2009/11/23/height-differences-among-professional-athletes.
It shows three probability density functions for the height (in inches) of NFL,
NBA and NHL players respectively(Compiled in November 2009).

Estimate the probability that an NFL
player chosen at random from the
group will have a height greater than
77 inches.

I We must estimate the area under
the white curve(height of NFL
players) to the right of 77. This
area is shaded in white on the
left.

I The total area under the white
curve is 1.

I About 10% of that area is in the
shaded region, thus the
probability is approx. 0.1.

http://datascopeanalytics.com/what-we-think/2009/11/23/height-differences-among-professional-athletes


Average of a set of observations of a R. Variable X.
Suppose that we perform 20 trials of the experiment “roll a fair six sided die”
and get the following outcomes: 1, 6, 3, 2, 5, 2, 3, 2, 4, 6, 4, 6, 2, 6, 3, 6, 2, 6, 3, 5.

I ¿We can calculate the average of these outcomes by adding the numbers
and dividing by twenty:

I x̄ = Average = 1+6+3+2+5+2+3+2+4+6+4+6+2+6+3+6+2+6+3+5
20

= 77
20

I For a very large number of trails, it would be better to organize the data
in a frequency table first:

Outcomes (Oi ) Frequency (fi )

1 1
2 5
3 4
4 2
5 2
6 6

x̄ = 1(1)+2(5)+3(4)+4(2)+5(2)+6(6)
20

= 77
20

= 1(f1)+2(f2)+3(f3)+4(f4)+5(f5)+6(f6)
20

we can rewrite this as the sum of
the outcomes times their relative
frequencies:
x̄ = 1 f1

20
+2 f2

20
+3 f3

20
+4 f4

20
+5 f5

20
+6 f6

20

I For a very large number of trials N, we would expect the relative
frequency of each outcome to be roughly equal to its probability. Since
each outcome has probability, 1/6 and we would expect the average to be

roughly x̄ ≈ 1
1

6
+ 2

1

6
+ 3

1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
= 3.5.



Expected Value of a Discrete Random Variable
If X is a random variable with a finite number of possible values x1, x2, . . . , xn

and corresponding probabilities p1, p2, . . . , pn, the expected value of X ,
denoted by E(X ) or µ, is

µ = E(X ) = x1p1 + x2p2 + · · ·+ xnpn.

I ¿

Outcomes Probability Out.× Prob.
X P(X) XP(X)

x1 p1 x1p1

x2 p2 x2p2

...
...

...
xn pn xnpn

Sum = E(X ) = µ

I If we run a large number of trials of the experiment, say N, and observe
the value of the random variable X in each, x1, x2, x3, . . . , xN , we should
have that

E(X ) ≈ x1 + x2 + x2 + · · ·+ xN

N
or E(X )N ≈ x1 + x2 + x2 + · · ·+ xN .



Example: Expected Value of a Discrete Random Variable
An experiment consists of flipping a coin 4 times and observing the sequence of
heads and tails. The random variable X is the number of heads in the observed
sequence. Find E(X ) ( the expected value of X ).

I We’ve already worked out the probability distribution of this Random
Variable:

X= P(X)
# Heads

0 1/16

1 4/16

2 6/16

3 4/16

4 1/16

.



Example: Expected Value of a Discrete Random Variable
An experiment consists of flipping a coin 4 times and observing the sequence of
heads and tails. The random variable X is the number of heads in the observed
sequence. Find E(X ) ( the expected value of X ).

I We’ve already worked out the probability distribution of this Random
Variable:

X= P(X) XP(X)
# Heads

0 1/16 0

1 4/16 4/16

2 6/16 12/16

3 4/16 12/16

4 1/16 4/16

E(X) = Total − > 32/16 = 2

.



Graphical Interpretation of the Expected Value
Graphically the expected value of a random variable X corresponds to the
balance point of the graphical representation of the distribution of X .

I Here is the graphical representation of the distribution of X = # Heads
from the previous example where E(X ) = 2;

I If the variable is discrete but has infinitely many possible outcomes, we
can use infinite summation to calculate the expected value, however this is
beyond the scope of this course.

.



More Examples
For the experiment consisting of flipping a coin 4 times and observing the
sequence of heads and tails, we also figured out the probability distribution of
the two random variables: Y = length of the longest run of heads in the
sequence and Z = total number of runs in the sequence (of both H’s and T’s).

I The distribution of these variables are:

Y = P(Y)
longest run H’s

0 1/16

1 7/16

2 5/16

3 2/16

4 1/16

Z = P(Z)
# Runs

1 2/16

2 6/16

3 6/16

4 2/16

.



More Examples
For the experiment consisting of flipping a coin 4 times and observing the
sequence of heads and tails, we also figured out the probability distribution of
the two random variables: Y = length of the longest run of heads in the
sequence and Z = total number of runs in the sequence (of both H’s and T’s).

I We calculate the expected value as before as the sum of the products of the
outcomes and their probabilities:

Y = P(Y) YP(Y)
longest
run H’s

0 1/16 0
1 7/16 7/16
2 5/16 10/16
3 2/16 6/16
4 1/16 4/16

Total− > 27/16
= E(Y ) ≈ 1.69

Z = P(Z) ZP(Z)
# Runs

1 2/16 2/16

2 6/16 12/16

3 6/16 18/16

4 2/16 8/16
Total− > 40/16
= E(Z) = 2.5

.



Expected Value of A Continuous R.V.
For a continuous random variable, X, we can use a method from calculus called
integration to calculate the expected value. This is beyond the scope of this
course, however E(X ) can be thought of geometrically as the balance point of
the probability density function in this case.

I Example: We can find the average
height of an NFL player chosen at
random from the population of
NFL players from the picture of the
probability density function shown
below. We estimate the point of
balance of the white distribution to
get roughly 75 inches as the
average height of an NFL player.

I As with discrete variables, we can interpret the expected value of a
continuous random variable as the number we would expect to get if we
calculated the average of the observations of the variable over many trials
of the experiment.

.



Measures of Variability for a R.V.
When we analyzed the length of the longest run of heads in K flips of a coin,
we saw that we could expect some variation in the length of the longest run in
randomly generated data.

We also saw that in order to make
good decisions about the data, we
needed some measure of the
variation.

I In this section, we will look at
two related measures of
variation for a random
variable; the variance and the
standard deviation.

I The variance of a random
variable can be viewed as the
average squared distance of
the outcomes from the mean
(expected value). .

.

.



Variance and St. Dev. of a Discrete R.V.
Let us reconsider our experiment of rolling a fair six-sided die and let X denote
the number on the uppermost face. We saw already that µ = E(X ) = 3.5.

I The variance is the (weighted) average squared distance of the outcomes
from the expected value of X. For any outcome, x , its squared distance
from µ = E(X ) is given by (x − µ)2

I
X P(X) XP(X) (X - µ) (X − µ)2 (X − µ)2P(X )
1 1/6 1/6 -2.5 6.25 (6.25)/6
2 1/6 2/6 -1.5 2.25 (2.25)/6
3 1/6 3/6 -0.5 0.25 (0.25)/6
4 1/6 4/6 0.5 0.25 (0.25)/6
5 1/6 5/6 1.5 2.25 (2.25)/6
6 1/6 6/6 2.5 6.25 (6.25)/6

µ = Total − > 21/6 = 3.5 σ2 = Sum − > (17.5)/6
= 35/12

I If we roll the die many times, we would expect the
average squared distance of the outcomes from the mean to be

approximately σ2 = 35/12 ≈ 2.92.

I The Standard Deviation of X denoted by σ is the square root of the
variance. σ =

√
σ2 =

p
35/12 ≈ 1.71.

.



General Variance and St. Dev. of a Discrete R.V.
If X is a random variable with values x1, x2, . . . , xn, corresponding probabilities
p1, p2, . . . , pn, and expected value µ = E(X ), then

Variance = σ2(X ) = p1(x1 − µ)2 + p2(x2 − µ)2 + · · ·+ pn(xn − µ)2

and

Standard Deviation = σ(X ) =
√

Variance .

I To compute the variance, we can proceed as in the previous example:

xi pi xipi (xi − µ) (xi − µ)2 pi(xi − µ)2

x1 p1 x1p1 (x1 − µ) (x1 − µ)2 p1(x1 − µ)2

x2 p2 x2p2 (x2 − µ) (x2 − µ)2 p2(x2 − µ)2

...
...

...
...

...
...

xn pn xnpn (xn − µ) (xn − µ)2 pn(xn − µ)2

Sum = µ Sum = σ2(X )

.



Example: Variance and St. Dev. of a Discrete R.V.
An experiment consists of flipping a coin 4 times and observing the sequence of
heads and tails. The random variable Z is the number of runs in the sequence.
Find E(Z) and the standard deviation, σ(Z)

I
Z P(Z) ZP(Z) (Z - µ) (Z − µ)2 (Z − µ)2P(Z)
1 2/16 2/16 -1.5 2.25 0.281
2 6/16 12/16 -0.5 0.25 0.094
3 6/16 18/16 0.5 0.25 0.094
4 2/16 8/16 1.5 2.25 0.281

µ = Total − > 40/16 = 2.5 σ2 ≈ Sum − > 0.75

I The standard deviation is given by σ(Z) = σ =
√
σ2 ≈

√
0.75 ≈ 0.866.

.



The Standard Deviation For Continuous Random Variables
The calculation of the variance for a continuous random variable is beyond the
scope of this course.

I However, the variance for a continuous random variable X has the same
interpretation as in the discrete case, it should give a good approximation
to the average squared distance of the outcomes from the mean if we
have many independent observations of the random variable X .

I The standard deviation of a continuous random variable is the square root
of the variance.

I If two continuous random variables have the same mean but different
standard deviations, then the one with the larger standard deviation will
have greater variation in its observations.

I For the symmetric distributions of the variables X (in red) and Y (in white)
shown below, we have E(X ) = E(Y ) = µ and σ(X ) > σ(Y ).

Μ

.



The Empirical Rule for Bell Shaped Densities
Bell curves or Normal Density functions frequently give good approximations to
the densities of random variables we observe in everyday life. There are tables
available for precise calculation of probabilities for these distributions. In this
course, we will use a rule of thumb called the Empirical Rule: If a random
variable has a probability distribution which is bell shaped or approximately bell
shaped, we have the following

I The probability of getting an outcome
within one standard deviation of the mean on any given trial of the

experiment is approximately 0.68. That is P(µ− σ, µ+ σ) ≈ 0.68

I The probability of getting an outcome
within two standard deviations of the mean on any given trial of the
experiment is approximately 0.95. That is P(µ− 2σ, µ+ 2σ) ≈ 0.95

I The probability of getting an outcome
within three standard deviations of the mean on any given trial of the
experiment is approximately 0.997. That is P(µ− 3σ, µ+ 3σ) ≈ 0.997 .

.



The Empirical Rule for Bell Shaped Densities

.



Z-Scores, Numerical Measures of relative Standing
Quite often when interpreting an observation of a random variable, such as
height or weight or a performance statistic, we are interested in how it
compares to the rest of the population; is it close to average or outstanding in
some respect?

I One measure of relative standing of an observation x is called a Z-score
and it measures the number of standard deviations that the observation
lies from the mean of the population.

I For an observation x of a random variable X with mean µ = E(X ) and
standard deviation σ = σ(X ), the Z -score for the observation x is given by

z =
x − µ
σ

.

.



Using Z-Scores
One way in which we can use Z -scores is to standardize scores for comparison
of performance.

I Example: The NFL combine is a week-long showcase where college
football players perform physical and mental tests in front of National
Football League coaches, general managers, and scouts. On this webpage:
http://matlabgeeks.com/sports-analysis/nfl/nfl-draft-running-the-40-and-
bench-pressing, the statistics for the performance of the top 750 prospects
for the NFL draft at the NFL yearly combine over a 7 year period from
2005 to 2011. The average time for a wide receiver for the 40-yard dash
was µ40 = 4.51 and the standard deviation was σ40 = 0.1. The average
time for a wide receiver for the cone test was µc = 6.96 and the standard
deviation was σc = 0.2. Notre dame player Golden Tate took part in the
2010 NFL combine. His time for the 40 yard dash was 4.42 seconds and
his time for the cone test was 7.12 seconds. In which test did he have a
better performance?

.



Using Z-Scores
Let’s calculate the Z-scores for comparison

W.R. W.R
40 yd. dash Cone Test
µ40 = 4.51 µc = 6.96
σ40 = 0.1 σc = 0.2

G.Tate 4.42 7.12
I G. Tate’s z-score for the 40 yard dash was z40 = 4.42−4.51

0.1
= −0.9.

I G. Tate’s z-score for the cone test was zc = 7.12−6.96
0.2

= 0.8.
I In the 40-yd dash G.Tate’s time was 0.9 standard deviations below

the average for wide receivers and on the cone test his time was 0.8
standard deviations above the mean. Therefore he had a better
relative performance on the 40-yd. dash.
.

.



Using Z-Scores to make Decisions
We could also use z-scores to make better decisions about whether a
string of baskets and misses was randomly generated, something we
considered in the previous section. Our reasoning would go like this:

I If a player took K shots with a constant probability p of making a basket

on every shot, where K is large;
I the expected length of the longest run of baskets is approximately

µ = − ln((1−p)K)
ln(p)

and the standard deviation is approximately σ = −π√
6 ln(p)

.

(see Schilling’s paper for details).
I The chances that the length of the longest run of baskets in a

randomly generated sequence will be outside the interval

(− ln((1−p)K)
ln(p) − 2( −π√

6 ln(p)
), − ln((1−p)K)

ln(p) + 2( −π√
6 ln(p)

)) is about 5%.

I If the longest run in the data for large K is outside this interval, I
will say that the sequence is not randomly generated, otherwise, I
will say there is not enough evidence to say that the sequence is not
randomly generated. There is a 5% chance that I will be wrong
when I say a sequence is not randomly generated.

I This is a crude example of something called Hypothesis testing.
.

.



Using Z-Scores to make Decisions; Example
We could also use z-scores to make better decisions about whether a
string of baskets and misses was randomly generated, something we
considered in the previous section. Our reasoning would go like this:

I If a player took K shots with a constant probability p of making a basket

on every shot, where K is large;
I the expected length of the longest run of baskets is approximately

µ = − ln((1−p)K)
ln(p)

and the standard deviation is approximately σ = −π√
6 ln(p)

.

(see Schilling’s paper for details).
I The chances that the length of the longest run of baskets in a

randomly generated sequence will be outside the interval

(− ln((1−p)K)
ln(p) − 2( −π√

6 ln(p)
), − ln((1−p)K)

ln(p) + 2( −π√
6 ln(p)

)) is about 5%.

I If the longest run in the data for large K is outside this interval, I
will say that the sequence is not randomly generated, otherwise, I
will say there is not enough evidence to say that the sequence is not
randomly generated. There is a 5% chance that I will be wrong
when I say a sequence is not randomly generated.

I This is a crude example of something called Hypothesis testing.
.

.



Example: Does this player have unusually long/short “longest run of Baskets”?

Last day we looked at data for a string of 548 consecutive shots taken by Dion

Waiters who has a career FG% of p = 0.417. We see that the longest run of

baskets in the data has length 5 (in fact there are 3 such runs in the data).

Is this consistent with what we would expect from a player who takes 548

consecutive shots with a probability of 0.417 of making a basket on each shot?
I For such a player, the expected value of the longest run of baskets in the

data is approximately µ = − ln((0.583)548)
ln(0.417)

≈ 6.88 ≈ 7

I The standard deviation is approximately σ = −π√
6 ln(0.417)

≈ 1.47
I Our rule tells us that if the longest run is outside the interval

(6.68− 2(1.47), 6.68 + 2(1.47)) = (3.74, 9.62), we decide that the

sequence is not a result of 548 Bernoulli trials with p = 0.417, otherwise

we say we have no reason to believe it is not the result of such an

experiment.
I In this case, the observed value of the longest run is 5 which is not outside

the interval, so we have no reason to believe that the sequence is not a

result of 548 Bernoulli trials with p = 0.417.

.



Wald Wolfowitz Runs Test

The relatively easy to use test for randomness given below is due to Wald and
Wofowitz.
Given a sequence with two values, success (S) and failure (F), with Ns success’
and Nf failures, let X denote the number of runs (of both S’s and F’s). Wald
and Wolfowitz determined that for a random sequence of length N with Ns

success’ and Nf failures (note that N = Ns + Nf ), the number of runs has
mean and standard deviation given by

E(X ) = µ =
2NsNf

N
+ 1, σ(X ) =

r
(µ− 1)(µ− 2)

N − 1
.

The distribution of X is approximately normal if Ns and Nf are both bigger
than 10.

I Using our crude form of hypothesis testing to test if a sequence of Baskets
and Misses was a result of K Bernoulli trials with constant probability, we
would decide that the sequence was not randomly generated if the
observed number of runs fell outside the interval

( 2NsNf
N

+ 1− 2(
q

(µ−1)(µ−2)
N−1

), 2NsNf
N

+ 1− 2(
q

(µ−1)(µ−2)
N−1

)).

.



Example: Wald Wolfowitz Runs Test

Use the Wald Wolfowitz Runs Test to test the following sequence of 58
consecutive baskets and misses for basketball player J R Smith for randomness:

MMBBMMMMBMMMBBMMBMBMMBMMBMBMM

BBMMMMBBMBMBBBBMMBMBMMBBBBMMM
I We have the number of baskets is NB = 25 and the number of misses is

NM = 33. The number of runs is 31.
I The expected number of runs is µ = 2NBNM

N
+ 1 = 2(33)(25)

58
+ 1 ≈ 29

I The standard deviation of the number of runs in randomly generated data

of this type is σ =
q

(µ−1)(µ−2)
N−1

=
q

(29−1)(29−2)
58−1

≈ 3.64
I If the observed number of runs is outside the interval

(29− 2(3.64), 29 + 2(3.64)) = (21.72, 36.28), we will conclude that this

sequence was not randomly generated, otherwise, we say that there is not

sufficient evidence to make such a conclusion.
I In this case, the observed number of runs is 31 which is in the interval

(21.72, 36.28), so we say that there is not sufficient evidence to occlude

that the sequence of baskets and misses is not randomly generated as a

sequence of Bernoulli trials with constant probability.

.


